Université Cadi Ayyad Faculté des Sciences Semlalia DEPARTEMENT DE PHYSIQUE Marrakech

SMP/S5

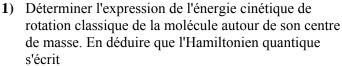
MÉCANIQUE QUANTIQUE II T.D. - Série nº 2

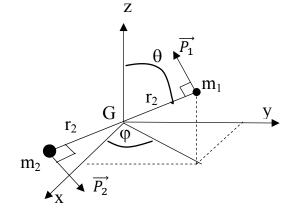
=========

Moment cinétique orbital et de spin - Harmoniques sphériques- Composition des moments cinétiques

Exercice1: Rotation d'une molécule diatomique.

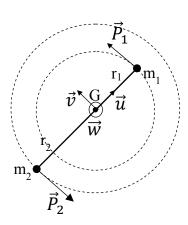
Nous assimilerons une molécule diatomique rigide à deux particules de masse m_1 et m_2 reliées par une tige de masse négligeable et de distance fixe r_e . Leur centre de masse est pris comme origine d'un trièdre direct Oxyz. L'ensemble est rigide et tourne avec une vitesse angulaire ω autour d'un axe situé à une distance r_1 de m_1 et r_2 de m_2 . L'axe de la molécule est repéré par les angles θ et ϕ .





$$H = \frac{L^2}{2I}$$

où L est l'opérateur moment cinétique orbital. Expliciter et donner le sens physique de I.



On a aussi
$$\begin{cases} m_1r_1 = m_2r_2 \\ r_e = r_1 + r_2 \end{cases}$$
 \Rightarrow $\begin{cases} r_1 = \frac{m_2}{M}r_e \\ r_2 = \frac{m_1}{M}r_e \end{cases}$ avec $M = m_1 + m_2$.
$$L_1 = \frac{m_1m_2^2}{M^2}r_e^2\omega \qquad \text{et} \qquad L_2 = \frac{m_1^2m_2}{M^2}r_e^2\omega \qquad \text{avec} \qquad m_1r_1^2 + m_2r_2^2 = \frac{m_1m_2}{M}r_e^2 = \mu r_e^2$$

$$L = L_1 + L_2 = \frac{m_1m_2}{M}r_e^2\omega = \mu r_e^2\omega$$

$$H = \frac{P_1^2}{2m_1} + \frac{P_2^2}{2m_2} = \frac{1}{2}(m_1r_1^2 + m_2r_2^2)\omega^2 = \frac{1}{2}\mu r_e^2\omega^2 = \frac{1}{2}\frac{\mu^2r_e^4\omega^2}{\mu r_e^2}$$
 Soit:
$$H = \frac{L^2}{2I} \qquad \text{avec} \quad I = \mu r_e^2 \quad \text{est le moment d'inertie de la molécule}.$$

2) Donner les états stationnaires et les énergies de rotation de la molécule. Indiquer la dégénérescence. Montrer que les écarts entre deux niveaux énergétiques ℓ -1 et ℓ croient linéairement avec le nombre quantique ℓ .

 $|\ell,m\rangle$ sont les états propre de $L^2 \Rightarrow$ sont aussi états propres de H.

On a:
$$L^2|\ell,m\rangle = \hbar^2 \ell(\ell+1)|\ell,m\rangle$$
 \Rightarrow $H|\ell,m\rangle = \frac{\hbar^2 \ell(\ell+1)}{2I}|\ell,m\rangle$
 $E_\ell = \frac{\hbar^2 \ell(\ell+1)}{2I}$,

Il y a $2\ell+1$ valeurs de m donc la dégénérescence est : $g_\ell=2\ell+1$

$$\Delta E_{\ell} = E_{\ell} - E_{\ell-1} = \frac{\hbar^2 \ell (\ell+1)}{2I} - \frac{\hbar^2 \ell (\ell-1)}{2I} = \frac{\hbar^2 \ell}{I}$$

3) Le spectre d'absorption de la molécule CO du monoxide de carbone présente un pic pour une longueur d'onde de 1,3 mm correspondant à une transition entre les niveaux $\ell = 1$ et $\ell = 2$. Calculer le moment d'inertie de la molécule et en déduire la distance r_e de celle-ci.

On donne les masses molaire des atomes : $M_C = 12 \text{ g}$ $M_O = 16 \text{ g}$ et $h = 6.62 \cdot 10^{-34} \text{ Js}$

$$\Delta E_2 = h \nu = \frac{hc}{\lambda} = \frac{2\hbar^2}{I}$$
 \Rightarrow $I = \frac{2\hbar^2}{\Delta E_2} = \frac{\lambda h}{2\pi^2 c}$

A.N.
$$I = \frac{\lambda h}{2\pi^2 c} = \frac{1.3 \cdot 6.62}{6\pi^2} 10^{-45} kgm^2 = 1.45 \cdot 10^{-46} kg \cdot m^2$$

$$\mu = \frac{m_1 m_2}{m_1 + m_2} \frac{1}{\mathcal{N}} = \frac{192}{28 \cdot 6.02} 10^{29} kg = 1.14 \cdot 10^{-26} kg$$

$$I = \mu r_e^2$$
 \Rightarrow $r_e = \sqrt{\frac{I}{\mu}} = \sqrt{\frac{1,45}{1,14}} 10^{-10} m = 1,13 \text{ Å}$

Exercice2: Harmoniques sphériques

On considère un système physique dans l'état de fonction d'onde:

$$\psi(\vec{r}) = N \cdot (x + y + z) \cdot e^{-\alpha r}$$

- où N est une constante de normalisation.
- 1) Montrer que $\psi(\vec{r})$ peut se mettre sous la forme :

$$\psi(\vec{r}) = f(r)g(\theta, \varphi)$$

Développer la partie angulaire dans la base des harmoniques sphériques.

On donne:
$$Y_{10}(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} \cos \theta$$
; $Y_{11}(\theta, \varphi) = -\sqrt{\frac{3}{8\pi}} \sin \theta \ e^{i\varphi}$; $Y_{1,-1}(\theta, \varphi) = \sqrt{\frac{3}{8\pi}} \sin \theta \ e^{-i\varphi}$

En coordonnées sphériques, on sait :

$$\begin{cases} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \quad \Rightarrow \quad \psi(\vec{r}) = N \cdot (\sin \theta \cos \varphi + \sin \theta \sin \varphi + \cos \theta) \cdot re^{-\alpha r} \\ z = r \cos \theta \end{cases}$$

Donc
$$f(r) = re^{-\alpha r}$$
 et $g(\theta, \varphi) = N \cdot (\sin \theta \cos \varphi + \sin \theta \sin \varphi + \cos \theta)$

En utilisant les expressions des harmoniques sphériques, on a :

$$\sin\theta\cos\varphi = \sqrt{\frac{2\pi}{3}}[Y_1^{-1}(\theta,\varphi) - Y_1^{1}(\theta,\varphi)]$$

$$\sin\theta\sin\varphi = i\sqrt{\frac{2\pi}{3}}[Y_1^{1}(\theta,\varphi) + Y_1^{-1}(\theta,\varphi)] \quad \text{et} \quad \cos\theta = \sqrt{\frac{4\pi}{3}}Y_1^{0}(\theta,\varphi)$$

$$\frac{1}{2}$$
 $(\theta,$

$$|g\rangle = N$$
 —

 $\overline{}$
 $\overline{}$

- 2) Quels sont les résultats possibles lors d'une mesure de L_z sur cet état ? et lors d'une mesure de L²sur cet état ?
- 3) Calculer les probabilités de tous les résultats possibles lors d'une mesure de L_z sur cet état. Indiquer l'état du système immédiatement après la mesure.

On sait que la probabilité de mesure est :

$$\mathcal{P}(vp) = |\langle \ell, m | g \rangle|^2 \qquad \text{(puisque } \langle g | g \rangle = 1)$$
 Donc : $\mathcal{P}(\hbar) = \frac{1}{3}$ et
$$\mathcal{P}(0) = \frac{1}{3}$$

Si le résultat de mesure est \hbar , l'état immédiatement après la mesure est $|1,1\rangle$

Si le résultat de mesure est $-\hbar$, l'état immédiatement après la mesure est $|1,-1\rangle$

Si le résultat de mesure est 0, l'état immédiatement après la mesure est |1,0>

4) Calculer la valeur moyenne de L_z sur cet état.

$$\langle g|L_z|g\rangle = \hbar \mathcal{P}(\hbar) - \hbar \mathcal{P}(-\hbar) + 0\mathcal{P}(0) = 0$$

Exercice 3: Opérateurs moments cinétiques

On considère un système physique dont l'espace des états, E^4 , est de dimension 4. Les kets propres communs aux observables J^2 et J_z . $\{|j, m\rangle\}$, avec j = 0, 1 forment une base de l'espace.

1) Ecrire dans cette base les matrices des opérateurs J_z , J^2 et J_x . On rangera les kets $|j,m\rangle$ dans l'ordre $|1,1\rangle$, $|1,0\rangle$, $|1,-1\rangle$, $|0,0\rangle$. Calculer les kets propres communs à J^2 et J_x .

2)
$$J_z|j,m\rangle = m\hbar|j,m\rangle$$
 donc $(J_z) = \begin{pmatrix} \hbar & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\hbar & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

$$J^{2}|j,m\rangle = \hbar^{2}j(j+1)|j,m\rangle \quad \text{donc} \quad (J^{2}) = \begin{pmatrix} 2\hbar^{2} & 0 & 0 & 0\\ 0 & 2\hbar^{2} & 0 & 0\\ 0 & 0 & 2\hbar^{2} & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$J_{x}|j,m\rangle = \frac{1}{2}(J_{+} + J_{-})|j,m\rangle = \frac{\hbar}{2}\sqrt{j(j+1) - m(m+1)}|j,m+1\rangle + \frac{\hbar}{2}\sqrt{j(j+1) - m(m-1)}|j,m-1\rangle$$

$$J_{x}|1,1\rangle = \frac{\hbar}{\sqrt{2}}|1,0\rangle, \qquad J_{x}|1,0\rangle = \frac{\hbar}{\sqrt{2}}|1,1\rangle + \frac{\hbar}{\sqrt{2}}|1,-1\rangle, \qquad \qquad J_{x}|1,-1\rangle = \frac{\hbar}{\sqrt{2}}|1,0\rangle \quad \text{ et } \qquad J_{x}|0,0\rangle = 0$$

On peut alors écrire la matrice représentant l'opérateur J_x :

$$(f_x) = \begin{pmatrix} 0 & \hbar/\sqrt{2} & 0 & 0\\ \hbar/\sqrt{2} & 0 & \hbar/\sqrt{2} & 0\\ 0 & \hbar/\sqrt{2} & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} = \hbar/\sqrt{2} \begin{pmatrix} 0 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (dans l'ordre prédéfini)

Calculons les valeurs propres et les vecteurs propres.

$$(J_x) = \begin{pmatrix} 0 & \hbar/\sqrt{2} & 0 & 0\\ \hbar/\sqrt{2} & 0 & \hbar/\sqrt{2} & 0\\ 0 & \hbar/\sqrt{2} & 0 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Il est évident que 0 est une valeur propre qui correspond au vecteur propre |0,0>

On diagonalise la matrice de J_x dans la base réduite $\{|1,1\rangle,|1,0\rangle,|1,-1\rangle\}$ à savoir :

$$(J_x) = \begin{pmatrix} 0 & \hbar/\sqrt{2} & 0 \\ \hbar/\sqrt{2} & 0 & \hbar/\sqrt{2} \\ 0 & \hbar/\sqrt{2} & 0 \end{pmatrix}$$

$$d\acute{e}t(J_x - \lambda I) = \begin{vmatrix} -\lambda & \hbar/\sqrt{2} & 0 \\ \hbar/\sqrt{2} & -\lambda & \hbar/\sqrt{2} \\ 0 & \hbar/\sqrt{2} & -\lambda \end{vmatrix} = -\lambda \left(\lambda^2 - \frac{\hbar^2}{2}\right) + \lambda \frac{\hbar^2}{2} = \lambda(\hbar^2 - \lambda^2) = 0$$

$$\text{Theorem so the lambet of the state of the lambet of the state of the lambet of the state of the lambet of the l$$

Les valeurs propres sont $\lambda = 0$, $\lambda = \hbar$ et $\lambda = -\hbar$

Et les vecteurs propres sont :

Pour
$$\lambda = 0$$
 $|x_0\rangle = \frac{1}{\sqrt{2}}(|1,1\rangle - |1,-1\rangle)$

Pour
$$\lambda = +\hbar$$
 $|x_+\rangle = \frac{1}{2} (|1,1\rangle + \sqrt{2}|1,0\rangle + |1,-1\rangle)$

Pour
$$\lambda = -\hbar$$
 $|x_{-}\rangle = \frac{1}{2}(|1,1\rangle - \sqrt{2}|1,0\rangle + |1,-1\rangle)$

Ces kets propres sont déterminés à un facteur de phase global près

 $|x_0\rangle$, $|x_+\rangle$ et $|x_-\rangle$ sont aussi des vecteurs propre de J^2 associés à la même valeur propre $2\hbar^2$ alors que le ket $|0,0\rangle$ est aussi vecteur propre de J^2 avec la valeur propre 0

3) Soit $|\psi\rangle$ un ket <u>normé</u> représentant l'état du système : $|\psi\rangle = a|1,1\rangle + b|1,0\rangle + c|1,-1\rangle + d|0,0\rangle$ où a, b, c et d sont des constantes réelles. Quelle est la probabilité d'obtenir le résultat \hbar lors d'une mesure de J_z dans cet état ? et lors d'une mesure de J_x ?

La probabilité d'obtenir lerésultat de mesure J_z égal \hbar est :

$$\mathcal{P}(\hbar) = |\langle 1, 1 | \psi \rangle|^2 = a^2$$

La probabilité d'obtenir la valeur \hbar lors de la mesure J_x est :

$$\mathcal{P}(\hbar) = |\langle x_+ | \psi \rangle|^2 = \frac{1}{4} |a + \sqrt{2}b + c|^2 = \frac{1}{4} (a + \sqrt{2}b + c)^2$$

Exercice 4: Particule de spin 1/2

On considère l'Hamiltonien suivant : $H = aS_z^2 + b(S_x^2 - S_y^2)$ où S est l'opérateur de spin 1/2 et a et b deux constantes réelles positives.

Déterminer les énergies et états propres de H.

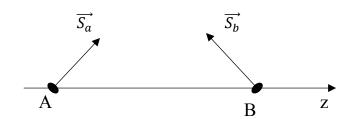
Avec
$$S_i^2 = \frac{\hbar^2}{4}I = \frac{\hbar^2}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $i = x, y, z$
$$S_x^2 - S_y^2 = 0$$
$$H = aS_z^2 + b(S_x^2 - S_y^2) = aS_z^2 = \frac{\hbar^2 a}{4}I = \frac{\hbar^2 a}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

On a une seule valeur propre $E = \frac{\hbar^2 a}{4}$ qui est deux fois dégénérée. Elle correspond à deux vecteurs propres $|+\rangle$ et $|-\rangle$

Exercice 5 : Interaction dipolaire magnétique- Composition de moments cinétiques.

A- Hamiltonien dipolaire

On s'intéressera ici à L'interaction entre deux moments magnétiques de deux électrons a et b de spin 1/2, liés à deux ions strontium maintenus à une distance fixe d.



Les deux moments magnétiques sont de la forme :

$$\overrightarrow{\mu_a} = \gamma_a \overrightarrow{S_a} \text{et } \overrightarrow{\mu_b} = \gamma_b \overrightarrow{S_b}.$$

 γ_a et γ_b sont les rapports gyromagnétiques.

Les deux moments magnétiques interagissent via l'Hamiltonien d'interaction :

$$H = \frac{\mu_0}{4\pi d^3} \left[\overrightarrow{\mu_a} \cdot \overrightarrow{\mu_b} - 3(\overrightarrow{\mu_a} \cdot \overrightarrow{z})(\overrightarrow{\mu_b} \cdot \overrightarrow{z}) \right]$$

où z est un vecteur unitaire joignant les deux dipôles.

1) Montrer que l'Hamiltonien d'interaction s'écrit :

$$H = \beta \left(kS_{az} \cdot S_{bz} - S^2 + S_a^2 + S_b^2 \right)$$

Où β et k sont des constantes que l'on précisera et S est le spin total tel que $\vec{S} = \overrightarrow{S_a} + \overrightarrow{S_b}$

$$H = \frac{\mu_0}{4\pi d^3} \gamma_a \gamma_b \left[\overrightarrow{S_a} \cdot \overrightarrow{S_b} - 3S_{az} S_{bz} \right]$$

$$A \text{vec } \overrightarrow{S_a} \cdot \overrightarrow{S_b} = \frac{S^2 - S_a^2 - S_b^2}{2}$$

$$H = -\frac{\mu_0 \gamma_a \gamma_b}{8\pi d^3} \left[6S_{az} S_{bz} - S^2 + S_a^2 + S_b^2 \right]$$

$$\beta = -\frac{\mu_0 \gamma_a \gamma_b}{8\pi d^3} \quad \text{et} \quad k = 6$$

2) Rappeler les vecteurs de la base couplée $|S, M\rangle$ et donner leurs expressions en fonction des éléments de la base découplée $|m_a, m_b\rangle$. Vérifier les résultats obtenus à partir des tables de Clebsh Gordan.

La base couplée est : $\{|1,1\rangle, |1,-1\rangle, |1,0\rangle, |0,0\rangle\}$

La base découplée est : $\{|+,+\rangle, |+,-\rangle, |-,+\rangle, |-,-\rangle$ En utilisant la règle $M = m_1 + m_2$, on a immédiatement :

$$|1,1\rangle = |+,+\rangle$$
 et $|1,-1\rangle = |-,-\rangle$

On a aussi
$$S_{\pm} = S_{a\pm} + S_{b\pm}$$
 de plus $S_{\pm}|S,m\rangle = \hbar\sqrt{S(S+1) - m(m\pm 1)}|S,m\pm 1\rangle$
 $S_{-}|1,1\rangle = \hbar\sqrt{2}|1,0\rangle = [S_{a-}|+,+\rangle + S_{a-}|+,+\rangle] = \hbar|-,+\rangle + \hbar|+,-\rangle$

Et le ket
$$|1,0\rangle$$
 s'écrit alors : $|1,0\rangle = \frac{1}{\sqrt{2}}[|+,-\rangle + |-,+\rangle]$

Le ket $|0,0\rangle$ est orthogonal aux autres éléments de la base et plus spécialement à $|1,0\rangle$

On pose
$$|0,0\rangle = \alpha|+,-\rangle + \beta|-,+\rangle$$

On pose
$$|0,0\rangle = \alpha|+,-\rangle + \beta|-,+\rangle$$

 $\langle 1,0|0,0\rangle = 0 = \frac{1}{\sqrt{2}}(\alpha+\beta) \implies \beta = -\alpha$. Le ket normé est : $|0,0\rangle = \frac{1}{\sqrt{2}}[|+,-\rangle - |-,+\rangle]$

3) Vérifier que les kets $|S, M\rangle$ sont vecteurs propres du produit $S_{az} \cdot S_{bz}$. Quelles sont les valeurs propres associées?

Avec
$$S_{az} \cdot S_{bz} | m_a, m_b \rangle = \hbar^2 m_a m_b | m_a, m_b \rangle$$

$$S_{az} \cdot S_{bz} |1,1\rangle = S_{az} \cdot S_{bz} |+,+\rangle = \frac{\hbar^2}{4} |+,+\rangle = \frac{\hbar^2}{4} |1,1\rangle$$

et
$$S_{az} \cdot S_{bz} | 1, -1 \rangle = S_{az} \cdot S_{bz} | -, - \rangle = \frac{\hbar^2}{4} | -, - \rangle = \frac{\hbar^2}{4} | 1, -1 \rangle$$

$$S_{az} \cdot S_{bz} |1,0\rangle = \frac{1}{\sqrt{2}} [S_{az} \cdot S_{bz} |+,-\rangle + S_{az} \cdot S_{bz} |-,+\rangle] = -\frac{\hbar^2}{4} \frac{1}{\sqrt{2}} [|+,-\rangle + |-,+\rangle] = -\frac{\hbar^2}{4} |1,0\rangle$$

$$S_{az} \cdot S_{bz} |0,0\rangle = \frac{1}{\sqrt{2}} [S_{az} \cdot S_{bz} |+,-\rangle - S_{az} \cdot S_{bz} |-,+\rangle] = -\frac{\hbar^2}{4} \frac{1}{\sqrt{2}} [|+,-\rangle - |-,+\rangle] = -\frac{\hbar^2}{4} |0,0\rangle$$

Les valeurs propres du produit S_{az} . S_{bz} sont : $\pm \frac{\hbar^2}{4}$

4) En déduire la représentation matricielle de H dans la base couplée. On les rangera selon l'ordre s décroissant et m décroissant.

$$(H) = \begin{pmatrix} \langle 1,1|H|1,1\rangle & \langle 1,0|H|1,0\rangle & \langle 1,1|H|1,-1\rangle & \langle 0,0|H|0,0\rangle \\ \langle 1,0|H|1,1\rangle & \langle 1,0|H|1,0\rangle & \langle 1,0|H|1,-1\rangle & \langle 1,0|H|0,0\rangle \\ \langle 1,-1|H|1,1\rangle & \langle 1,-1|H|1,0\rangle & \langle 1,-1|H|1,-1\rangle & \langle 1,-1|H|0,0\rangle \\ \langle 0,0|H|1,1\rangle & \langle 0,0|H|1,0\rangle & \langle 0,0|H|1,-1\rangle & \langle 0,0|H|0,0\rangle \end{pmatrix}$$
e de montrer que :

Il est facile de montrer que :

$$H|1,1\rangle = \beta \hbar^2 |1,1\rangle$$

$$H|1,0\rangle = -2\beta\hbar^2|1,0\rangle$$

$$H|1,1\rangle = \beta \hbar^{2}|1,-1\rangle$$

$$H|1,-1\rangle = \beta \hbar^{2}|1,-1\rangle$$

$$H|0,0\rangle = 0$$

Et par conséquent, on écrit :

$$(H) = \beta \hbar^2 \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

5) Donner les niveaux d'énergie et leurs dégénérescences.

Les niveaux d'énergies, notées $E_{s,m}$ sont :

$$E_{1,1} = E_{1,-1} = \beta \hbar^2 = -\frac{\mu_0 \hbar^2}{8\pi d^3} \gamma_a \gamma_b$$

 $E_{1,1}=E_{1,-1}=\beta\hbar^2=-rac{\mu_0\hbar^2}{8\pi d^3}\gamma_a\gamma_b$ est deux fois dégénérée et associée aux 2 vecteurs propres : $|1,1\rangle$ et $|1,-1\rangle$

$$E_{1,0} = -2 \beta \hbar^2 = \frac{\mu_0 \hbar^2}{4\pi d^3} \gamma_a \gamma_b$$
 est simple et associée au vecteur propre : $|1,0\rangle$

 $E_{0,0} = 0$ est simple et associée au vecteur propre : $|0,0\rangle$

B- Evolution

Initialement, on prépare le système des deux électrons dans l'état :

$$|\psi(0)\rangle=|m_a,m_b\rangle=|+,-\rangle$$

1) Exprimer cet état en fonction des éléments de la base couplée.

$$\begin{cases} |1,0\rangle = \frac{1}{\sqrt{2}}[|+,-\rangle + |-,+\rangle] \\ |0,0\rangle = \frac{1}{\sqrt{2}}[|+,-\rangle - |-,+\rangle] \end{cases} \Rightarrow |\psi(0)\rangle = |+,-\rangle = \frac{1}{\sqrt{2}}[|1,0\rangle + |0,0\rangle]$$

2) Déterminer $|\psi(t)\rangle$ dans la base couplée, puis dans la base découplée.

$$|\psi(t)\rangle = e^{-\frac{iHt}{\hbar}}|\psi(0)\rangle = \frac{e^{-\frac{iHt}{\hbar}}}{\sqrt{2}}(|1,0\rangle + |0,0\rangle) = \frac{1}{\sqrt{2}}\left[e^{+i2\beta\hbar t}|1,0\rangle + |0,0\rangle\right]$$

$$|\psi(t)\rangle = \frac{1}{2}\left[\left(e^{+i2\beta\hbar t} + 1\right)|+,-\rangle + \left(e^{+i2\beta\hbar t} - 1\right)|-,+\rangle\right]$$
3) Quelle est la probabilité de trouver les deux spins avec la même projection c.à.d. les états

 $|m_a, m_b\rangle = |+, +\rangle$ ou $|m_a, m_b\rangle = |-, -\rangle$

$$\begin{split} \mathcal{P}(|+,+\rangle) &= |\langle +,+|\psi(t)\rangle|^2 = |\langle 1,1|\psi(t)\rangle|^2 = 0 \\ \mathcal{P}(|-,-\rangle) &= |\langle -,-|\psi(t)\rangle|^2 = |\langle 1,-1|\psi(t)\rangle|^2 = 0 \end{split}$$

C- Effet d'un champ magnétique extérieur

Le champ magnétique dipolaire, aux distances considérées, est très faible, et peut a priori être perturbé par un champ extérieur non désiré. Nous nous contenterons de considérer le cas où le champ en question, noté

 $\vec{B} = B\vec{z}$, est constant et uniforme. Dans ce cas-ci on posera $\gamma_a = \gamma_b = \gamma$

1) Donner l'expression du nouvel Hamiltonien H' en fonction de H et de Sz, la composante du spin total suivant z.

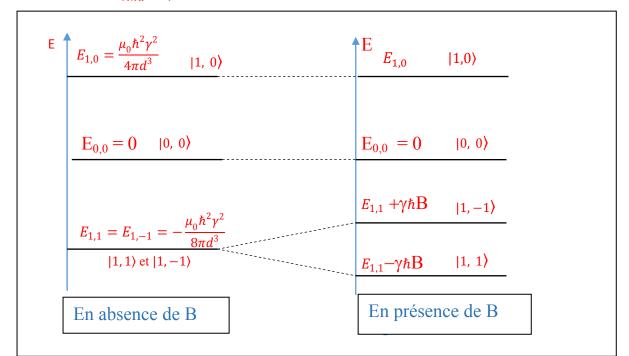
$$\vec{M} = \vec{M}_a + \vec{M}_b = \gamma \vec{S}_a + \gamma \vec{S}_b = \gamma \vec{S}$$

$$H' = H - \vec{M} \cdot \vec{B} = H - \gamma \vec{S} \cdot \vec{B} = H - \gamma B S_z$$

2) La base couplée, est-elle une base propre de H'. Exprimer les niveaux d'énergie en fonction de s et m. donner les énergies pour chaque état. Conclure.

D'après l'expression de H', on aura : $H'|s,m\rangle = (E_{s,m} - \gamma \hbar Bm)|s,m\rangle$,

Soit:
$$H'|1,1\rangle = \left(-\frac{\mu_0 \hbar^2}{8\pi d^3} \gamma^2 - \gamma \hbar B\right)|1,1\rangle$$
, $H'|1,-1\rangle = \left(-\frac{\mu_0 \hbar^2}{8\pi d^3} \gamma^2 + \gamma \hbar B\right)|1,-1\rangle$
 $H'|1,0\rangle = \left(\frac{\mu_0 \hbar^2}{4\pi d^3} \gamma^2\right)|1,0\rangle$ et $H'|0,0\rangle = 0|0,0\rangle$



Conclusion : La présence d'un champ magnétique a pour effet de :

- laisser invariant les énergies $E_{1,0}$ et $E_{0,0}$
- lever la dégénérescence de l'énergie $E_{1,1}(ou\ E_{1,-1})$

En d'autres termes, il y a une levée complète de la dégénérescence et par conséquent, l'hamiltonien H' forme ECOC.

34. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

